Distributed Computing with Apache Sedona

Contents

28. Distributed Computing with Apache Sedona#

28.1. Introduction#

28.2. Learning Objectives#

28.3. Installing and Setting Up Apache Sedona#

28.3.1. Installation Requirements#

28.3.2. Core Imports and Configuration#

28.3.3. Creating a Sedona-Enabled Spark Session#

28.4. Core Concepts and Data Structures#

28.4.1. Understanding Spatial DataFrames#

28.4.2. Spatial Data Types#

28.4.3. Creating Spatial DataFrames#

28.4.4. Working with Real Geospatial Data#

28.5. Spatial Operations and Functions#

28.5.1. Basic Geometric Properties#

28.5.2. Distance Calculations#

28.5.3. Spatial Relationships#

28.6. Spatial Joins and Indexing#

28.6.1. Understanding Spatial Join Types#

28.6.2. Performing Spatial Joins with World Cities#

28.6.3. Spatial Join Example: Cities by Country#

28.6.4. Optimizing Spatial Joins with Indexing#

28.7. Advanced Spatial Analysis#

28.7.1. Spatial Aggregations#

28.7.2. Spatial Clustering Analysis#

28.8. Working with Raster Data#

28.9. Performance Optimization#

28.9.1. Best Practices for Large-Scale Processing#

28.9.2. Memory Management#

28.10. Integration with Other Tools#

28.10.1. Exporting Results to GeoPandas#

28.10.2. Visualization with Matplotlib#

28.11. Real-World Use Cases#

28.11.1. Use Case 1: Urban Heat Island Analysis#

28.11.2. Use Case 2: Transportation Network Analysis#

28.12. Key Takeaways#

28.13. Exercises#

28.13.1. Exercise 1: Setting Up Sedona and Basic Spatial Operations#

28.13.2. Exercise 2: Working with Real Geospatial Data#

28.13.3. Exercise 3: Distance Analysis#

28.13.4. Exercise 4: Spatial Joins#

28.13.5. Exercise 5: Spatial Aggregation and Clustering#

28.13.6. Exercise 6: Buffer Analysis#

28.13.7. Exercise 7: Spatial SQL Queries#

28.13.8. Exercise 8: Performance Optimization#

28.13.9. Exercise 9: Integration with GeoPandas#

28.13.10. Exercise 10: Advanced Spatial Analysis#