25. High-Performance Geospatial Analytics with DuckDB# 25.1. Introduction# 25.1.1. What Makes DuckDB Special for Geospatial Work?# 25.2. Learning Objectives# 25.3. Installation and Setup# 25.3.1. Installing Required Packages# 25.3.2. Library Import and Configuration# 25.3.3. Understanding DuckDB Connections# 25.3.4. Installing and Loading Extensions# 25.4. SQL Basics for Spatial Analysis# 25.4.1. Understanding SQL for Geospatial Work# 25.4.2. Sample Datasets# 25.4.3. Reading Data Directly from URLs# 25.4.4. Creating Persistent Tables# 25.4.5. Viewing Your Data# 25.4.6. Essential SQL Commands# 25.4.6.1. Selecting Data# 25.4.6.2. Choosing Specific Columns# 25.4.6.3. Finding Unique Values# 25.4.6.4. Counting and Aggregation# 25.4.7. Filtering and Sorting Data# 25.4.7.1. Filtering with WHERE Clauses# 25.4.7.2. Sorting Your Results# 25.4.7.3. Grouping and Aggregating Data# 25.5. Python API Integration# 25.5.1. Understanding Result Formats# 25.5.2. Seamless DataFrame Integration# 25.5.3. Result Conversion and Export# 25.5.4. Persistent Storage# 25.6. Data Import# 25.6.1. Understanding Data Formats in Geospatial Work# 25.6.2. Downloading Sample Data# 25.6.3. Working with CSV Files# 25.6.4. JSON Files# 25.6.5. DataFrames# 25.6.6. Parquet Files# 25.6.7. Spatial Data Formats# 25.7. Data Export# 25.7.1. Sample Spatial Data Setup# 25.7.2. Export to DataFrames# 25.7.3. Export to Files# 25.7.4. Export to JSON# 25.7.5. Export to Excel# 25.7.6. Export to Parquet# 25.7.7. Export Spatial Formats# 25.8. Working with Geometries# 25.8.1. Understanding Spatial Data Types# 25.8.2. Sample Data Setup# 25.8.3. Creating and Understanding Geometries# 25.8.4. Working with Points# 25.8.5. Working with LineStrings# 25.8.6. Working with Polygons# 25.9. Spatial Relationships# 25.9.1. Understanding Spatial Predicates# 25.9.2. Working with Real Spatial Data# 25.9.3. Testing Spatial Equality# 25.9.4. Point-in-Polygon Analysis# 25.9.5. Proximity Analysis with Distance# 25.10. Spatial Joins# 25.10.1. Understanding Spatial vs. Regular Joins# 25.10.2. Exploring Our Data# 25.10.3. Your First Spatial Join# 25.10.4. Advanced Spatial Analysis# 25.10.5. Distance-Based Analysis# 25.10.6. Advanced Multi-Table Joins# 25.11. Large-Scale Data Analysis# 25.11.1. Analyzing the National Wetlands Inventory# 25.11.2. Scaling Up: Nationwide Wetland Analysis# 25.11.2.1. Count the Total Number of Wetlands# 25.11.2.2. Count Wetlands by State# 25.11.3. Mapping Wetland Counts by State# 25.11.4. Wetland Distribution Charts# 25.11.4.1. Pie Chart of Wetlands by State# 25.11.4.2. Bar Chart of Wetlands by State# 25.11.5. Wetland Area Analysis# 25.11.5.1. Total Wetland Area in the U.S.# 25.11.5.2. Wetland Area by State# 25.11.5.3. Pie Chart of Wetland Area by State# 25.11.5.4. Bar Chart of Wetland Area by State# 25.12. Key Takeaways# 25.12.1. Fundamental Concepts You’ve Learned# 25.12.2. Why This Approach is Powerful# 25.12.3. Building Your Spatial Analysis Skills# 25.13. Exercises# 25.13.1. Exercise 1: Creating Tables# 25.13.2. Exercise 2: Column Filtering# 25.13.3. Exercise 3: Row Filtering# 25.13.4. Exercise 4: Sorting Results# 25.13.5. Exercise 5: Unique Values# 25.13.6. Exercise 6: Counting Rows# 25.13.7. Exercise 7: Aggregating Data# 25.13.8. Exercise 8: Joining Tables# 25.13.9. Exercise 9: String Manipulation# 25.13.10. Exercise 10: Filtering with Multiple Conditions# 25.13.11. Exercise 11: Basic Setup and Data Loading# 25.13.12. Exercise 12: Spatial Relationships Analysis# 25.13.13. Exercise 13: Advanced Spatial Joins# 25.13.14. Exercise 14: Data Import and Export# 25.13.15. Exercise 15: Large-Scale Analysis#